Stable localized pulses and zigzag stripes in a two-dimensional diffractive-diffusive Ginzburg-Landau equation
نویسندگان
چکیده
We introduce a model of a two-dimensional (2D) optical waveguide with Kerr nonlinearity, linear and quintic losses, cubic gain, and temporal-domain filtering. In the general case, temporal dispersion is also included, although it is not necessary. The model provides for description of a nonlinear planar waveguide incorporated into a closed optical cavity. It takes the form of a 2D cubic-quintic Ginzburg-Landau equation with an anisotropy of a novel type: the equation is diffractive in one direction, and diffusive in the other. By means of systematic simulations, we demonstrate that the model gives rise to stable fully localized 2D pulses, which are spatiotemporal “light bullets”, existing due to the simultaneous balances between diffraction, dispersion, and Kerr nonlinearity, and between linear and quintic losses and cubic gain. A stability region of the 2D pulses is identified in the system’s parameter space. Besides that, we also find that the model generates 1D patterns in the form of simple localized stripes, which may be stable, or may exhibit an instability transforming them into oblique stripes with zigzags. The straight and oblique stripes may stably coexist with the 2D pulse, but not with each other.
منابع مشابه
Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملStable vortex solitons in the two-dimensional Ginzburg-Landau equation.
In the framework of the complex cubic-quintic Ginzburg-Landau equation, we perform a systematic analysis of two-dimensional axisymmetric doughnut-shaped localized pulses with the inner phase field in the form of a rotating spiral. We put forward a qualitative argument which suggests that, on the contrary to the known fundamental azimuthal instability of spinning doughnut-shaped solitons in the ...
متن کاملTwo-dimensional solitary pulses in driven diffractive-diffusive complex Ginzburg-Landau equations
Two models of driven optical cavities, based on two-dimensional GinzburgLandau equations, are introduced. The models include loss, the Kerr nonlinearity, diffraction in one transverse direction, and a combination of diffusion and dispersion in the other one (which is, actually, a temporal direction). Each model is driven either parametrically or directly by an external field. By means of direct...
متن کاملTwisted vortex filaments in the three-dimensional complex Ginzburg-Landau equation.
The structure and dynamics of vortex filaments that form the cores of scroll waves in three-dimensional oscillatory media described by the complex Ginzburg-Landau equation are investigated. The study focuses on the role that twist plays in determining the bifurcation structure in various regions of the (alpha,beta) parameter space of this equation. As the degree of twist increases, initially st...
متن کاملExact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001